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cDpto. F́ısicaTeórica-UV and IFIC-CSIC, Edificio Institutos Investigación,

Apt 22805, E-46071 Valencia, Spain

E-mail: belen.gavela@uam.es, thambye@ulb.ac.be, d.hernandez@uam.es,

pilar@ific.uv.es

Abstract: We explore realizations of minimal flavour violation (MFV) for the lepton sec-

tor. We find that it can be realized within those seesaw models where a separation of the

lepton number and lepton flavour violating scales can be achieved, such as scalar mediated

(type II) and inverse seesaw models. We present in particular a simple implementation of

the MFV hypothesis which differs in nature from those previously discussed. It allows to

reconstruct the flavour structure of the model from the values of the light neutrino masses

and mixing parameters, even in the presence of CP-violating phases. Experimentally reach-

able predictions for rare processes such as µ → eγ are given.

Keywords: Beyond Standard Model, Neutrino Physics

ArXiv ePrint: 0906.1461

c© SISSA 2009 doi:10.1088/1126-6708/2009/09/038

mailto:belen.gavela@uam.es
mailto:thambye@ulb.ac.be
mailto:d.hernandez@uam.es
mailto:pilar@ific.uv.es
http://arxiv.org/abs/0906.1461
http://dx.doi.org/10.1088/1126-6708/2009/09/038


J
H
E
P
0
9
(
2
0
0
9
)
0
3
8

Contents

1 Introduction 1

2 MFV in scalar mediated (type-II) seesaw models 3

3 Two-scale fermionic mediated seesaw models (type-I and type-III) 5

4 The simplest MFV type-I seesaw model 7

5 MFV in type-I inverse seesaw models 15

6 MFV in type-I seesaw models of type B 17

7 Conclusions 19

A Naturalness 21

1 Introduction

Neutrino masses constitute the first evidence of physics beyond the Standard Model (SM).

This new physics is likely to shed new light in the flavour puzzle, and could possibly be

the seed of the matter-antimatter asymmetry in the Universe. One of the most interesting

questions is therefore whether this new physics can be tested through low-energy observ-

ables beyond neutrino oscillations, such as direct searches for the new particles involved,

rare decays or precision electroweak measurements. These effects are however expected

to be undetectable if the new physics scale is orders of magnitude above the TeV, as is

generally assumed.

In contrast, the possibility that the new physics scale is not too far beyond the elec-

troweak scale opens new possibilities to test the origin of neutrino masses in future ex-

periments. In this context, however, the explanation of neutrino masses requires some

symmetry principle to ensure their smallness as compared to the masses of other fermions.

As it is well known, in the absence of new light degrees of freedom, the simplest symmetry

principle that can ensure this suppression is global lepton number, which would forbid

the Weinberg’s effective operator responsible for light Majorana neutrino masses. It is

therefore conceivable that new dynamics exists that induces lepton flavour violation (LFV)

at a scale ΛFL, which could be as low as the TeV, while total lepton number (LN) is an

approximate symmetry at this scale. The breaking of lepton number would result from

subtler effects, which could be suppressed if they originate from a still higher energy scale

ΛLN or if they are mediated by small couplings in a theory with only one scale. We will
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see that these two possibilities can be quite different with respect to naturalness, but for

the time being we will not distinguish between them: as long as those new scales are larger

than the electroweak one, a model-independent representation is given in both cases by an

effective theory of the type

L = LSM +
αd=5

ΛLN
Od=5 +

∑

i

αd=6
i

Λ2
FL

Od=6
i + . . . . (1.1)

In this expansion, the only operator of dimension five (d = 5) is Weinberg’s [1]. The

dimensionless couplings αd=5, αd=6
i , . . . may be assumed to be of O(1), while the effective

scales ΛFL, ΛLN, take care of the suppressions of each type of contribution, with ΛLN ≫ ΛFL

as required to obtain tiny neutrino masses. Therefore, all the effective couplings that break

LN, such as Weinbergs’s, are more suppressed than those that preserve lepton flavour

symmetry, e.g. those of d = 6.

The phenomenology of the d = 6 operators associated to neutrino masses has been

extensively studied in the literature [2–6]. Rare processes such as µ → eγ can be generically

quite large if the scale ΛFL is of O(TeV), but it is not possible to predict the strength of

these processes in a model-independent way, since the flavour structure of the corresponding

couplings, αd=6
i , is in general unrelated to that in neutrino masses, αd=5.

A class of models where a relation can be established are those incorporating Minimal

Flavour Violation (MFV) [4]. The Standard Model Lagrangian, LSM, would respect a

large flavour symmetry group where it not for the presence of Yukawa couplings, Yu, Yd

(note that the presence of both types of coupling is necessary to induce physical flavour

mixing in the quark sector) and Ye. MFV is the assumption that the only source of flavour

violation in the full effective theory is the same as in LSM: ie. the Yukawa couplings, which

therefore should be included in the effective theory as flavour spurions.

This hypothesis was first introduced in the context of the quark flavour sector [7], and

there it implies that the effective theory must be constructed with the SM fields and the

quark Yukawa couplings in order to satisfy the full flavour symmetry group of LSM. More

precisely, the coefficients of the effective d ≥ 6 operators are specific combinations of the

Yukawa couplings, which thus determine the flavour structure. As a result, the theory

avoids potentially too large flavour-violating effects and is very predictive in the realm of

flavour-violating processes.

The same hypothesis in the lepton sector [4] is more subtle, because strictly speaking

the only breaking of lepton flavour in LSM is due to the charged-lepton Yukawa couplings

Ye that induce no flavour-changing effects by themselves (that is, in the absence of neutrino

masses). The additional flavour spurions needed to induce lepton mixing are necessarily

model dependent, since they must appear in the couplings of the lepton doublets to new

fields. The authors of ref. [4] considered two such possibilities in seesaw scenarios:

• Minimal case: the flavour spurions are the couplings of Weinberg’s operator, i.e. αd=5

in eq. (1.1). As a consequence, qualitatively speaking αd=6 ∝ αd=5†αd=5.
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• Extended case: there are very massive right-handed Majorana neutrinos (as in type I

seesaw) and their Yukawa couplings to the lepton doublets provides the basic flavour

spurions. In the absence of CP-violating phases, αd=6 ∝ αd=5.

Both assumptions imply interesting relations between the flavour structure of d = 5 and

d = 6 couplings, or in other words between neutrino masses and rare processes such as

lα → lβγ. The precise connection is different for the two cases.

The setup developed in ref. [4] assumes two fundamental — a priori unrelated —

conditions to hold:

a) Hierarchy between the operators that break and preserve lepton number or, in other

words, a large hierarchy between the corresponding scales, ΛFL ≪ ΛLN.

b) Flavour structure of the d = 6 operator coefficients fixed by that of the d = 5 one.

This setup rises however several fundamental questions. In both extended and minimal

MFV models, flavour spurions are introduced which are coupled to the physical fields

responsible for the LN scale. How exactly can these spurions remain coupled, for example

in the d = 6 operator coefficients, after the large scale ΛLN is integrated out? In order

to fulfill conditions a) and b), is it necessary to have two distinct scales, ΛLN and ΛFL.

Do these scales correspond to physical particle masses? Would this imply a naturalness

problem [6, 8]? How general are the relations found in ref. [4] between d = 5 and d = 6

operators in the extended case?

In this paper we address these questions by considering simple explicit seesaw models

that satisfy criteria a) and b).

Given that we consider explicit models and not just some generic effective theory, we

can distinguish two situations. Either condition b) is satisfied by the intrinsic structure of

the model, or it is a consequence of a restrictive MFV hypothesis. Obviously the former case

is more interesting and we will show a couple of examples of this type (in sections 2 and 4),

where the whole lepton flavour structure of the model can be extracted from the light

neutrino mass matrix. Furthermore, we will present a very simple model in section 4 that

satisfies conditions a) and b), but in which the relation between d = 5 and d = 6 operators

is none of the kind considered in ref. [4]. For this model, no particular requirement about

CP conservation is necessary.

2 MFV in scalar mediated (type-II) seesaw models

We are interested in explicit models fulfilling the two criteria a) and b) mentioned in the

Introduction. In this section we stress that the type-II seesaw model is nothing but a MFV

model of the minimal type (that is, where the basic flavour spurion is the coefficient of

Weinberg’s operator). It is the simplest example of such minimal MFV model.

As it is well known, the type-II seesaw model [9] in its basic form only adds to the

SM fields one scalar hypercharge 2 scalar triplet field (δ++, δ+, δ0). Writing this triplet

as
(

1√
2
(δ1 − iδ2), δ3,

1√
2
(δ1 + iδ2)

)
, the most general Lagrangian can be easily written in

– 3 –
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terms of ∆ ≡ (δ1, δ2, δ3):

L∆ = (Dµ∆)† (Dµ∆) +
(
ℓ̃LY∆(τ · ∆)ℓL + µ∆φ̃†(τ · ∆)†φ + h.c.

)
− ∆†M∆

2∆

−λ2

2

(
∆†∆

)2
− λ3

(
φ†φ

) (
∆†∆

)
− λ4

2

(
∆†T i∆

)2
− λ5

(
∆†T i∆

)
φ†τ iφ , (2.1)

with φ ≡ (φ+φ0)T , Ti being the three-dimensional representation of the SU(2) genera-

tors (as defined in ref. [6]) and τi the Pauli matrices. In the absence of charged-lepton

Yukawa couplings and Y∆, the leptonic Lagrangian exhibits a global flavour symmetry

group SU(3)L ⊗ SU(3)E . The coexistence of Y∆ and µ∆ explicitly breaks lepton number,

inducing at low energies the Weinberg operator:

δLd=5 = cd=5
αβ

(
ℓc
Lαφ̃∗

) (
φ̃† ℓLβ

)
+ h.c. , (2.2)

with

cd=5
αβ = 2Y∆ αβ

µ∆

M2
∆

, (2.3)

which yields a light neutrino Majorana mass matrix of the form (v = 246 GeV)

mναβ = −2Y∆ αβ v2 µ∆

M2
∆

. (2.4)

The coefficient of the d = 5 operator is therefore proportional to Y∆, which is the only

flavour spurion of the model. As for the generated d = 6 operators, there is only one at

tree level which involves leptons [6]:1

δLd=6 = cd=6
αβγδ

(
ℓLβγµℓLδ

) (
ℓLαγµℓLγ

)
, (2.5)

with

cd=6
αβγδ = − 1

M2
∆

Y∆
†
αβY∆δγ . (2.6)

Note that the structure of cd=6 is the generic one for d = 6 leptonic operator coefficients

in all seesaw models, cd=6 ∼ (M−1Y )†M−1Y , where Y and M denote new Yukawas and

scales, respectively [6]. The comparison of eqs. (2.3) and (2.6) shows that, in addition,

the flavour structure of the type II seesaw d = 6 leptonic coupling goes basically like the

square of that of the d = 5 coupling, as in the minimal MFV of ref. [4]. In other words, in

the type-II seesaw model if we know the flavour structure of the d = 5 coefficient we know

that of the d = 6 ones.

In this framework, while the d = 5 operator coefficient is proportional to µ∆, the

d = 6 coefficient is not. Therefore the decoupling in size of d = 5 and d = 6 couplings is

automatic. With small enough µ∆, a tiny neutrino mass doesn’t require large M∆ and/or

small Yukawa couplings Y∆, hence the d = 6 couplings can be sizeable. The only limit to

this pattern is given by the rare decay constraints, as studied e.g. in ref. [6]. For example if

1As shown in ref. [6], this model generates also two other d = 6 operators involving scalar Higgs

doublets and gauge bosons and no fermions, hence less interesting for our purpose since they do not carry

any flavour structure.
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M∆ ∼ 1 TeV, Y∆ ∼ 10−1, µ∆ ∼ 10−10 GeV, one gets neutrino masses of order 10−1 eV and

saturates the experimental upper bound on the µ → eee rate. The latter gives the most

stringent constraint as l → 3l′ decays are induced at tree level by the d = 6 operator.

The phenomenological consequences of the relation cd=6
αβγδ ∝ cd=5†

αβ cd=5
γβ have been stud-

ied in ref. [10]. Note that the fact that the operator in eq. (2.5) could emerge in the context

of MFV theories has been raised in ref. [5], independently of the type-II seesaw model.

The flavour breaking scale ΛFL is well defined in this case: it is the mass of the

triplet. The lepton number violating scale ΛLN is instead more subtly defined: a large

lepton number scale has been traded by a small µ∆ one, which does not correspond to

the mass of any new physical particle. The ΛLN scale in eq. (1.1) would rather correspond

now to the combination ΛLN ∼ M2
∆/µ∆. As the µ∆ term explicitly breaks lepton number

(in conjunction with the dimensionless Yukawa coupling Y∆), its small value is stable

because µ∆ = 0 restores the lepton number symmetry. Therefore µ∆ does not necessarily

require any large new physics scale to generate it. Alternatively, µ∆ could come from the

spontaneous breaking of lepton number, i.e. from the vev vS of an extra scalar field. It could

then be small owing to a seesaw-type mechanism i.e. µ∆ ∼ v2
S/Λ′ (in which case the scale of

the new physics responsible for the small value of µ∆ could effectively be a large scale ΛLN =

Λ′), or because vS is small and µ∆ = c ·vS (with c a dimensionless coefficient). Problems of

stability of the scale vS are nevertheless to be expected in this framework with spontaneous

breaking of lepton number, as discussed in appendix A, unless the smallness of µ∆ is due

to the smallness of the dimensionless coefficient c rather than to the smallness of vS .

In summary, the type-II seesaw model satisfies both criteria a) and b) above and to our

knowledge there is no simpler model which satisfies them in a minimal-content minimal-

flavour way.

3 Two-scale fermionic mediated seesaw models (type-I and type-III)

In general all type I seesaw models are described by the following Lagrangian:

L = LSM + iN̄α 6 ∂Nα −
[
λαb

N N̄αφ̃†ℓb
L +

Mαβ

2
N̄αNβc + h.c.

]
, (3.1)

giving rise to a neutrino mass matrix with the following block structure:

Mν =

(
0 λT

Nv/
√

2

λNv/
√

2 M

)
, (3.2)

where λN is in general a N × 3 matrix and M is N × N , with N the number of sterile

Weyl species. The lepton symmetry can be ensured for particular choices of the λN and

M matrices.

In its minimal version [11], there is only one new scale encoded within the heavy right-

handed neutrino mass matrix M , and since lepton number is violated by the simultaneous

presence of M and λN , we can identify it with ΛLN. The flavour spurions, which in this

case are the leptonic Yukawa couplings λN , would decouple when the heavy LN scale goes

– 5 –
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to infinity. It thus fails in satisfying condition a), which would require two distinct scales,

and it is not a valid model of MFV.

In order to achieve a successful MFV fermionic-mediated seesaw theory, some extra

flavour dynamics at a lower scale, ΛFL, is needed.2 Moreover, it is also necessary to identify

the basic flavour spurions −if there is more than one possible choice − and to guarantee

that in the limit ΛLN → ∞ they remain coupled to the degrees of freedom active at the

lower scale ΛFL.

Type-I seesaw models with two scales built in do exist. It is well known that type I

seesaw models with suppressed d = 5 and unsuppressed d = 6 interactions can be built,

through the assumption of an approximately conserved lepton number U(1)LN symme-

try [13, 14] (see refs. [6, 17, 18] for a recent discussion).3 The basic mechanism is to have

a number of Weyl species such that those with opposite U(1)LN charges pair up into Dirac

fermions, while one or several charged species remain unpaired and therefore massless. The

massless neutrinos only get masses when symmetry breaking interactions are included. The

two scales are therefore related to the typical Dirac masses (ΛFL) and the typical lepton

number breaking scale (ΛLN). At least two generic types of flavour structures which do not

decouple in the limit of LN conservation, ΛLN → ∞, can be identified:

• Type A: λN and M have the following block structures:

λT
N =

(
Y T

N 0
)

, M =

(
0 ΛT

Λ 0

)
, (3.3)

In this case the N = 2n sterile species divide in two groups with opposite lepton

number charges, which we will denote by N and N ′. The corresponding Lagrangian

would read:

LA = LSM + iN̄α 6 ∂Nα + iN̄ ′α 6 ∂N ′α

−
[
Y αb

N N̄αφ̃†ℓb
L +

Λαβ

2

(
N̄ ′αNβc

+ N̄βN ′αc
)

+ h.c.

]
. (3.4)

Models of this type include those in refs. [13, 15, 16], often denominated inverse or

multiple seesaw models. The lepton number assignments are LN = −LN ′ = LℓL
= 1.

The pairs (Nα, N ′α) combine into n massive Dirac fermions, while the 3 neutrinos

remain massless for any n.

• Type B: λN and M have the following block structures:

λN =
(

Y T
N 0 0

)
, M =




0 ΛT 0

Λ 0 0

0 0 Λ′


 , (3.5)

2 For instance, this happens in type-I seesaw models with two scales built in. Recall as well that the

scalar mediated type-II seesaw model in the previous section naturally encoded two distinct scales.
3Seesaw models of type III [12] with unsuppressed d = 6 operators can be constructed analogously [6].

Since the phenomenology of flavour violating decays will be very similar, we restrict the explicit analysis to

models with singlet fermions.
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in which M includes two distinct scales Λ and Λ′ even in the lepton number conserving

limit under discussion. The Lagrangian is then

LB = LSM + iN̄α /∂Nα + iN̄ ′α /∂N ′α + iN̄ ′′α /∂N ′′α

−
[
Y αb

N N̄αφ̃†ℓb
L +

Λαβ

2

(
N̄ ′αNβc + N̄βN ′αc

)
+

Λ′
αβ

2
N̄ ′′αN ′′βc + h.c.

]
, (3.6)

and the lepton number assignments are LN = −LN ′ = LℓL
= 1 and LN ′′ = 0. In

this case therefore N = 3n, where 2n of the sterile species have opposite charges

combining into n massive Dirac fermions, as in model of Type A. The third group of

n massive Majorana singlets, N ′′, is decoupled again in the lepton number conserv-

ing limit, leaving behind 3 massless neutrinos. It should be noted that the simplest

example of type B model in eq. (3.5) corresponds to n = 1. In this case, Y T
N is a

three-dimensional vector and Λ and Λ′ are just numbers. This model has been re-

cently discussed in refs. [6, 18], and it also corresponds to the structure of the models

considered earlier in refs. [14, 17].

Obviously there could be generalizations of the above to more species, but we will discuss

MFV in the context of these two possibilities.

The Lagrangian in eq. (3.4) leads (for all n) to n quasi Dirac fermions of masses

∼ Λ ≫ v and three massless neutrinos that can get masses only if lepton number breaking

entries are switched on. Let us next consider how it can be implemented.

4 The simplest MFV type-I seesaw model

We will now present the simplest possibility satisfying conditions a) and b), which will turn

out to be a model of type A with n = 1.

Consider type A models above for general n. In order to obtain neutrino masses, it

is necessary to break the U(1)LN symmetry, lifting the zeros in eq. (3.3). By naturalness

arguments we should therefore lift all zeros at once. Let us then consider the matrix

Mν =




0 Y T
N v ǫY ′T

N v

YNv µ′ ΛT

ǫY ′
Nv Λ µ


 , (4.1)

where ǫ is a flavour-blind constant. ǫ, µ and µ′ are “small parameters”, that is, the scales

in µ, µ′ are much smaller than those in Λ and v, and ǫ ≪ 1, to ensure an approximate

U(1)LN symmetry.

The entry in the 22 element in eq. (4.1) does not modify cd=5 at tree level, and we will

obviate it in what follows, while entries in either the 13 or 33 elements do. When the n

quasi Dirac neutrinos are integrated out, they give rise to both d = 5 and d = 6 effective

operators (as expected in all type I seesaw models [2, 6]):

δLd=5 = cd=5
αβ

(
ℓc
Lαφ̃∗

) (
φ̃†ℓLβ

)
, (4.2)

δLd=6 = cd=6
αβ ℓ̄L

α
φ̃i/∂

(
φ̃†ℓβ

L

)
, (4.3)

– 7 –
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with coefficients4

cd=5
αβ ≡ ǫ

(
Y ′

N
T 1

ΛT
YN + Y T

N

1

Λ
Y ′

N

)

αβ

−
(

Y T
N

1

Λ
µ

1

ΛT
YN

)

αβ

, (4.4)

cd=6
αβ ≡

(
Y †

N

1

Λ†Λ
YN

)

αβ

+ O(ǫ) . (4.5)

Note that in general there is no relation between cd=5 and cd=6. However, we will see below

that a direct connection does exists in the case n = 1. In this case, YN and Y ′
N are three

dimensional complex column vectors, while Λ, µ and µ′ are in general complex numbers.

This model gives rise to just one massless neutrino, which is a viable possibility.

In order to prove the connection between cd=5 and cd=6, we will start by showing that

in the case µ = µ′ = 0, we can reconstruct the Yukawa vectors YN and Y ′
N (up to a global

normalization) from cd=5, and therefore we can fully predict the flavour structure of cd=6.

We will then show that the general case, eq. (4.1) for n = 1, can be treated similarly.

Let us then first consider the mass matrix

Mν =




0 Y T
N v ǫY ′T

N v

YNv 0 ΛT

ǫY ′
Nv Λ 0


 . (4.6)

The d = 5 and d = 6 operator coefficients are then given by

cd=5
αβ ≡ ǫ

(
Y ′

N
T 1

ΛT
YN + Y T

N

1

Λ
Y ′

N

)

αβ

, cd=6
αβ ≡

(
Y †

N

1

Λ†Λ
YN

)

αβ

+ O(ǫ) . (4.7)

The texture in eq. (4.6) has been considered previously in ref. [19] for n = 3. In that texture,

lepton number is broken due to the simultaneous presence of all three types of terms, and

light neutrino masses are then expected to depend on YN , Y ′
N and Λ. The flavour breaking

in this model stems from both YN , Y ′
N , and in consequence there is flavour violation even in

the lepton-number conserving ǫ → 0 limit, as YN remains active in that limit: non-trivial

leptonic flavour physics can thus affect processes other than neutrino masses.

The structure of the effective Lagrangian in eq. (1.1) is therefore recovered if one

identifies ΛFL → Λ and ΛLN → Λ/
√

ǫ. The separation of scales is achieved by having a

small ǫ, which is technically natural since ǫ = 0 restores the lepton number symmetry. The

ΛLN scale does not correspond to any particle mass at this level, while ΛFL corresponds to

the Dirac heavy right-handed neutrino mass scale, as expected.

We will show that in this case the coefficient cd=5
αβ contains sufficient information to

reconstruct both Yukawa vectors, up to a global normalization, and therefore also the

flavour structure of cd=6
αβ up to a global normalization. Furthermore, this statement is valid

even in the presence of CP violation.

It is easy to see how the number of real and imaginary parameters in the complete

model actually matches those present in the effective operator coefficient cd=5. In particu-

lar, the number of physical phases in the light neutrino mass matrix is two, given that one

4 As recalled in the previous section, the leptonic c
d=6 coefficients are expected to depend on

(Λ−1
YN )†(Λ−1

YN ), (Λ−1
ǫY

′
N )†(Λ−1

YN ) and (Λ−1
ǫY

′
N )†(Λ−1

ǫY
′
N ), and the last two contributions can

thus be neglected at leading order in ǫ.
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neutrino is massless. The fact that there are only two physical phases in the model is easy

to see: the fundamental Lagrangian has seven phases, three in YN , three in Y ′
N and one

in Λ, and a rotation of the N , N ′ fields and the three lepton doublets gets rid of five of

them. Only two physical phases remain and this also means that in the complete neutrino

mass matrix there are only three yet unknown parameters: the angle θ13, the CKM type

CP-violating phase “δ” and a unique Majorana phase “α”. Furthermore, there is then a

certain freedom in the choice of basis for the complete theory, for instance it is possible to

take real Λ and YN and also get rid of one of the 3 phases in Y ′
N . In what follows we will

work in a basis in which Λ is real while both YN and Y ′
N may be taken as complex.

Let us explicitly reconstruct the Yukawa couplings from the neutrino mass matrix. It

is useful to introduce the notations:

Y T
N ≡ yu Y ′

N
T ≡ y′v, (4.8)

where y and y′ are real numbers and u and v are three complex vectors with unit norm.

That is

〈u,u〉 = 〈v,v〉 = 1, (4.9)

where the scalar product is between complex vectors 〈u,v〉 ≡ u† · v.

The coefficient cd=5 in eq. (4.2) can be rewritten as

cd=5 =
ǫyy′

Λ

(
uvT + vuT

)
≡ ǫyy′

Λ
Ô, (4.10)

cd=6 =
y2

Λ2

(
uu†

)
+ O(ǫ2) . (4.11)

Ô is a symmetric complex matrix and can therefore be diagonalized by a transformation

of the form:

ǫyy′v2

Λ
UT ÔU =

ǫyy′v2

Λ
Ôd ≡ −




m1 0 0

0 m2 0

0 0 m3


 , (4.12)

where mi denote the mass eigenvalues, which are taken real, and U is the unitary PMNS

matrix.

We can determine the mass eigenvalues and the entries of the U matrix diagonalizing

the hermitian matrix Ô†Ô, since

U †Ô†ÔU = Ô2
d. (4.13)

The three eigenvalues and eigenvectors of the matrix Ô†Ô read:

µ0 = 0 , e0 =
u × v√

1 − |u · v|2
, (4.14)

µ± = (1 ± ρ)2 e± =
1√

2(1 ± ρ)

(
e−iθ/2u∗ ± eiθ/2v∗

)
, (4.15)

– 9 –



J
H
E
P
0
9
(
2
0
0
9
)
0
3
8

where

〈u,v〉 = 〈v,u〉∗ = ρeiθ. (4.16)

The PMNS matrix U is now given by the matrix whose columns are precisely these

eigenvectors. The measurement of the neutrino mixing parameters fully fixes then the

eigenvectors and allows to reconstruct the vectors u and v since:

u∗ =
eiθ/2

√
2

(√
1 + ρ e+ +

√
1 − ρ e−

)
, (4.17)

v∗ =
e−iθ/2

√
2

(√
1 + ρ e+ −

√
1 − ρ e−

)
, (4.18)

while the ratio of the two mass splittings fixes ρ (it quantitatively depends on the neutrino

hierarchy). The phase θ is not physical since it can be reabsorbed by rephasing the N field

by ei θ
2 and N ′ by e−i θ

2 (leaving Λ real) and therefore we set it to zero for simplicity.

In order to do this matching precisely, we have to distinguish the cases of the two

possible neutrino hierarchies.

Normal hierarchy. In this case the ordering of the neutrino mass eigenstates is:

m1 = 0 , m2 =
ǫyy′v2

Λ
(1 − ρ) , m3 =

ǫyy′v2

Λ
(1 + ρ) , (4.19)

and therefore the columns of U are ordered as (e0, e−, e+). From the ratio of the two

neutrino splittings we can fix ρ:

r ≡ |∆m2
solar|

|∆m2
atmos|

=
|∆m2

12|
|∆m2

23|
, ρ =

√
1 + r −√

r√
1 + r +

√
r

. (4.20)

Reading the columns of the PMNS matrix, one obtains

YN i =
y√
2

(√
1 + ρ U∗

i3 +
√

1 − ρ U∗
i2

)
, (4.21)

Y ′
N i =

y′√
2

(√
1 + ρ U∗

i3 −
√

1 − ρ U∗
i2

)
. (4.22)

We will use the standard angular parametrization of the PMNS matrix:

U =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


Uph (4.23)

where Uph contains the Majorana phases and can be parametrized in our case as:

Uph =




e−iα

eiα

1


 . (4.24)
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Up to terms of O(
√

r, s13), we find

Y T
N ≃ y




eiδs13 + e−iαs12r
1/4

s23

(
1 −

√
r

2

)
+ e−iαr1/4c12c23

c23

(
1 −

√
r

2

)
− e−iαr1/4c12s23


 . (4.25)

Since the lightest neutrino is massless, from the central values of the atmospheric and

solar parameters [20], we can also fix the combination

∣∣∣
ǫyy′v2

Λ

∣∣∣ ∼ 0.029 eV →
∣∣∣
ǫyy′

Λ

∣∣∣ ∼ 4.9 × 10−13 TeV−1. (4.26)

Inverted hierarchy. In this case the ordering of the neutrino mass eigenstates is:

m3 = 0 , m1 =
ǫyy′v2

Λ
(1 − ρ) , m2 =

ǫyy′v2

Λ
(1 + ρ), (4.27)

and therefore the columns of U are ordered as (e−, e+, e0). We find:

r =
|∆m2

12|
|∆m2

13|
, ρ =

√
1 + r − 1√
1 + r + 1

. (4.28)

and

YN i =
y√
2

(√
1 + ρ U∗

i2 +
√

1 − ρ U∗
i1

)
, (4.29)

Y ′
N i =

y′√
2

(√
1 + ρ U∗

i2 −
√

1 − ρ U∗
i1

)
. (4.30)

For the explicit parametrization of the PMNS matrix U , we will use that in eq. (4.23).

Again, up to terms of O(
√

r, s13) we find

Y T
N ≃ y√

2




c12e
iα + s12e

−iα

c12

(
c23e

−iα − s23s13e
i(α−δ)

)
− s12

(
c23e

iα + s23s13e
−i(α+δ)

)

−c12

(
s23e

−iα + c23s13e
i(α−δ)

)
+ s12

(
s23e

iα − c23s13e
−i(α+δ)

)


 . (4.31)

From the central values of the atmospheric and solar parameters [20], for the inverted

hierarchy under study it follows that

∣∣∣
ǫyy′v2

Λ

∣∣∣ ∼ 0.049 eV →
∣∣∣
ǫyy′

Λ

∣∣∣ ∼ 8.1 × 10−13 TeV−1. (4.32)

Having reconstructed the full Yukawa vectors, it is now possible to make predictions

for other lepton flavour violating processes. It is interesting to estimate the rate for li → ljγ

processes and establish how do they depend on the unique free real parameter, θ13, and on

the neutrino mass hierarchy. We will analyze the ratios

Bji ≡
Γ(li → ljγ)

Γ(li → ljνiν̄j)
∼ |u∗

i uj |2 =
1

y2
|YNi

YNj
|2 . (4.33)
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Figure 1. Normal hierarchy. Left: Ratio Beµ/Beτ for different values of the CP phase δ = 0

(solid) and δ = π/2 (dashed), with the two pairs of curves corresponding to α = 0 and α = π/4 as

denoted. Right: the same for the ratio Beµ/Bµτ .
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Figure 2. Inverted hierarchy. Left: Ratio Beµ/Beτ for different values of the CP phase δ = 0

(solid) and δ = π/2 (dashed), with the two pairs of curves corresponding to α = 0 and α = π/4 as

denoted. Right: the same for the ratio Beµ/Bµτ .

In figures 1 and 2 we show the results for the ratios Beµ/Beτ and Beµ/Bµτ as a function

of θ13, for the normal and inverted hierarchies. The most striking feature is the strong

dependence on the Majorana phase α of one of these ratios for both hierarchies: Beµ/Beτ

in the case of normal hierarchy, and Beµ/Bµτ for inverted hierarchy. In fact, within the

ranges of δ and θ13 studied, the following prediction holds for the normal hierarchy:

Beµ ≃ 9

2
Beτ α = 0,

Beµ ≃ 5

2
Beτ α = π/4,

Beµ ≃ Beτ α = π/2 . (4.34)

while Bµτ > Beµ. In contrast, a mild dependence on the δ phase holds for any θ13 value

within the allowed range.

– 12 –



J
H
E
P
0
9
(
2
0
0
9
)
0
3
8

-π
-

π
2

π
2

π
α

1

2

3

4

5

-π
-

π
2

π
2

π
α

2

4

6

8

10

12

Figure 3. Left: Ratio Beµ/Beτ for the normal hierarchy (solid) and the inverse hierarchy (dashed)

as a function of α for (δ, s13) = (0, 0.2). Right: the same for the ratio Beµ/Bµτ .
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Figure 4. Left: |mee|(eV ) for the normal hierarchy as a function of sin θ13 and for (δ, α) = (0, 0)

(solid), (0, π/4) (dotted) and (π/2, 0) (dashed). Right: the same for the inverse hierarchy.

A different situation is found for the inverse hierarchy where, i.e. for vanishing θ13 = 0,

Beµ ≫ Bµτ α = 0 ,

Beµ ≃ 2Bµτ α = π/4,

Beµ ≪ Bµτ α = π/2 , (4.35)

while Beµ = Beτ holds. A significant dependence on δ may also develop for θ13 6= 0 for the

two ratios considered depending on the value of the Majorana phase α

The α-dependence of the ratios considered has been plotted in figure 3 for both hier-

archies, for δ = 0, s13 = 0.2.

Note that the absolute normalization of the branching ratios is unconstrained, since

neutrino masses only fix the combination yy′v2/Λ, while the branching ratios depend on

y2v2/Λ2. Λ not far from the TeV scale is thus a viable possibility, and these branching

ratios could therefore be measurable, provided y′ is small enough to account for the tiny

neutrino masses.

In figures 4 and 5 we show the expected value of |mee| to be measured in neutrinoless
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Figure 5. mee as a function of α for the normal (solid) and inverted (dashed) hierarchies, for

(δ, s13) = (0, 0.2).

beta decay, for the normal and inverse hierarchies and for the central experimental values

of the known parameters as a function of s13 and α. As expected, the value is of O(10−3eV )

for the normal hierarchy and one order of magnitude above for the inverse one. Expanding

in the small parameters s13 and r1/2, the following approximate expressions result (taking

the central values for s23 and s23 ≃ c23):

|mee|NH ≃ 0.058 eV
∣∣∣s2

13e
2iδ − s2

12e
−2iα√r(1 −

√
r)

∣∣∣

|mee|IH ≃ 0.049 eV
∣∣s2

12e
−2iα − c2

12e
2iα

∣∣ + O(r, s2
13) . (4.36)

The inverse hierarchy case is in consequence approximately independent of s13 and therefore

of the CKM-like phase δ, but very sensitive to the Majorana phase α. In the normal

hierarchy case, the dependence on all the parameters is significant. In both cases, it is

important to stress that the measurement of |mee|, together with that of the neutrino

mixing parameters in future neutrino oscillation experiments can in principle fix all the

parameters of the model, except the absolute normalization of the d = 6 operator.5

Let us now turn to the more general case when µ, µ′ 6= 0 in eq. (4.1). It turns out that

all the results previously derived in this section hold as well for this general case. This can

be easily seen by noting that, for the corresponding cd=5 coefficient in eq. (4.4),

cd=5
αβ = ǫ

(
Y ′T

N

1

ΛT
YN + Y T

N

1

Λ
Y ′

N

)

αβ

−
(

Y T
N

1

Λ
µ

1

ΛT
YN

)

αβ

= ǫ

[(
Y ′

N − k

2
YN

)T 1

ΛT
YN + Y T

N

1

Λ

(
Y ′

N − k

2
YN

)]

αβ

, (4.37)

with

k ≡ 1

ǫ
µ

1

ΛT
. (4.38)

5Note also that the relation between the d = 6 and d = 5 flavour structures obtained above is not of

the “minimal” or “extended” MFV types and is not based on the assumption of an underlying flavour

symmetry (such as a O(n) symmetry enforced in ref. [4] to have a right-handed neutrino mass matrix

proportional to the identity).
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Therefore cd=5 has the same structure of that in eq. (4.7) with the substitution

Y ′
N −→ Y ′

N − k

2
YN . (4.39)

We can consequently reconstruct YN and the combination in eq. (4.39) from the neutrino

mass matrix, that is from cd=5, exactly as we did before. From these two combinations,

we cannot reconstruct Y ′
N in eq. (4.1) , because the factor k is a new free parameter.

Nevertheless, all the flavour violating processes induced by cd=6 depend only on YN , at

leading order in the lepton-number violation parameters, and are therefore the same. In

other words, the structure in eq. (4.1) is as predictive as that in eq. (4.6). The low-energy

physics (i.e. the relation between flavour violation transitions and the neutrino mass matrix)

is the same in both models.

A nice feature of the model considered in this section, eq. (4.1), is its naturalness

characteristics. It does not contribute significantly to the electroweak hierarchy problem

for Λ values near the TeV scale, as all loop corrections relevant to Higgs physics are

proportional to small parameters.

Finally, given the predictivity of the model, it would be interesting to explore whether

it leads to successful leptogenesis. At low scale, a small mass splitting between the right-

handed neutrinos is necessary in order to have a large resonant enhancement of the CP-

asymmetry. This indeed happens in the model discussed here, eq. (4.1), which induces

a tiny mass difference of order of the size of the U(1)LN breaking, and hence leads to a

large resonant enhancement (with however e.g. large washout effects from inverse decays

and ∆L = 2 scatterings for large values of the YN couplings). This has been analyzed in

ref. [16] for the case where the 22 and 33 entries in eq. (4.1) dominate the mass splitting.

Successful leptogenesis appears to be achievable in this case, although only for relatively

small values of all Yukawa couplings, which in turn leads to suppressed flavour changing

d = 6 effects, even for a mass splitting at the resonance peak. The case with negligible 22

and 33 entries, eq. (4.6), is yet to be analyzed.

We will consider next an alternative class of candidate MFV models: those in which

lepton number violation results from lifting the zeros in the diagonal entries of the Mν

matrix, with no 13 entry and n > 1. These are the well known inverse seesaw models [13].

5 MFV in type-I inverse seesaw models

This section deals, as did the previous one, with models of type A, see eq. (3.3). We

consider now the case in which light neutrino masses result from lifting the zeros in the

diagonal entries of Mν . In contrast to the case with only off-diagonal lepton-violating en-

tries, eq. (4.6), the diagonal entries are soft-breaking terms and therefore would not induce

by themselves off-diagonal terms. The fundamental neutrino mass matrix is of the form:

Mν =




0 Y T
N v/

√
2 0

YNv/
√

2 µ′ ΛT

0 Λ µ


 . (5.1)
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For n = 1 however it leads to two massless neutrinos and in consequence is of no physical

interest. n ≥ 2 is needed to get at least 2 massive neutrinos [13]. The simultaneous pres-

ence of YN , Λ and the Majorana couplings µ and/or µ′ breaks lepton number. As explained

before the µ′ scale does not play any role at low-energies at tree level.

The tree-level exchange of the heavy species gives rise to the same d = 5 and d = 6

effective operators in eqs. (4.2)–(4.3) with coefficients

cd=5
αβ ≡ −

(
Y T

N

1

Λ
µ

1

ΛT
YN

)

αβ

, cd=6
αβ ≡

(
Y †

N

1

Λ†Λ
YN

)

αβ

. (5.2)

The structure of the effective Lagrangian in eq. (1.1) is therefore recovered if one identifies

ΛFL → Λ and ΛLN → Λ2/µ. The separation of scales is achieved by having a small µ,

which is technically natural since µ = 0 restores the lepton number symmetry.

Concerning the flavour structure of the d = 5 and d = 6 operators in eq. (5.2), they

are, in general, unrelated. That is, unless µ ∼ In×n, which amounts to saying that the term

preserves an additional O(n) symmetry. Obviously this symmetry is broken by the YN and

Λ couplings, and in consequence it can be argued that there is a priori no justification for

this choice, which will not be stable under radiative corrections. Nevertheless, this choice

is equivalent to the assumption or hypothesis of MFV: that the only sources of flavour

violation are encoded in the charged lepton Yukawa coupling, Ye, in YN and maybe also in

Λ. If these three couplings were zero, then the lepton sector would have a symmetry group:

SU(3)ℓL
× SU(3)E × SU(n)N × O(n)N ′ . (5.3)

Alternatively, the option λE = YN = 0 with Λ proportional to the identity would imply

that the flavour symmetry group is

SU(3)ℓL
× SU(3)E × O(n)N,N ′ . (5.4)

In the former case the neutrino sector spurions are YN ∼ (3̄, 1, n, 1) and Λ ∼ (1, 1, n, n) ,

while in the latter YN ∼ (3̄, 1, n). In both cases, the exact connection of d = 5 and d = 6

couplings only holds up to CP phases. Indeed, in the absence of CP violation it follows that

cd=5
αβ = −µ cd=6

αβ , (5.5)

and the flavour processes induced by the d = 6 operator are fixed, up to a global normal-

ization, by the neutrino mass matrix. This model with diagonal µ is therefore the simplest

example of the extended class of models defined in ref. [4].

In refs. [4, 5], the implications for flavour-violating processes li → ljγ as well as µe

conversion in extended models of MFV have been discussed and should apply as well to the

model discussed here. However, it turns out that the d = 6 Lagrangian at tree level contains

just one operator, eq. (4.3), which is none of those appearing in the basis considered in

ref. [4]. It can obviously be rewritten in terms of operators in that list:

δLd=6 = cd=6
αβ ℓ̄L

α
φ̃i/∂

(
φ̃†ℓβ

L

)
=

cd=6
αβ

2

(
ℓ̄L

α
γµℓβ

L φ†iDµφ − ℓ̄α
Lτγµℓβ

L φ†τiDµφ
)

. (5.6)
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The combination is however a blind direction: li → ljγ and µ → e do not take place at

tree level, as it happens separately for any of the two operators on the right -hand side of

eq. (5.6), but only at one loop. In consequence, the bounds derived from these processes

in refs. [4, 5] are further suppressed by an additional loop factor, roughly 1/(4π)2 ∼ 10−2.

The flavour structure is however the same. Similar plots to those shown in figures 1, 2 can

be found in ref. [4], which should be strictly applicable to our case. They found the pattern

Bµτ ≫ Beµ ∼ Beτ , which is to be contrasted with the findings in the previous section.

Also in this case it is necessary to justify the presence of the µ, µ′ terms and no other

U(1)LN breaking term, such as for instance a 13 entry in eq. (5.1) as in the model in previ-

ous section. The symmetry pattern shown in eq. (5.3) could justify it. Alternatively, such

a choice could be justified if the U(1)LN symmetry is spontaneously broken by the vac-

uum expectation value (vev) of a scalar singlet S with charge -2, leading to a Lagrangian

of the form:

LA = LSM + iN̄ 6 ∂N + iN̄ ′ 6 ∂N ′ −
[
YN N̄ φ̃†ℓL +

Λ

2

(
N̄ ′N c + N̄N ′c)

+
gS

2
N̄ ′N ′c +

g′S†

2
N̄N c + h.c.

]
+ V (S, φ). (5.7)

A vev of the singlet would induce the µ and µ′ couplings µ = g〈S〉, µ′ = g′〈S†〉. Nev-

ertheless, this possibility results in a naturalness problem, that is, of the stability of the

separation of scales at the quantum level. We discuss it briefly in appendix A.

6 MFV in type-I seesaw models of type B

The models of type B, e.g. with 3n sterile species, also satisfy an exact global U(1)LN

symmetry, which ensures the presence of three massless neutrinos for any value of n. In

order to lift their masses it is necessary to have some entries in the mass matrix that violate

the symmetry. There are several possibilities with different implications in what respects

MFV. One possibility is to include some small entries in the zeros of M . The modification

of only the diagonal entries in M reduces the model to one of type A, since the N ′′ fields

would remain decoupled in this case. The modification instead of only the off-diagonal

entries induces a neutrino mass matrix of the form:

Mν =




0 YNv/
√

2 0 0

Y T
N v/

√
2 0 Λ µ2

0 ΛT 0 µ1

0 µ2 µ1 Λ′


 . (6.1)

The main interest of these models, in comparison with models of type A, is that it is no

longer necessary to assume that µ1 and µ2 are very small scales. Even more, in the limit in

which Λ′ is much larger than all the other scales present, it reduces to a Type A model. In

other words, type B models can be seen as an ultraviolet completion of type A scenarios,

whose small scales are then explained in terms of large ones in the fundamental theory.

Let us discuss this point in detail.
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The separation of scales, that is, the implementation of criterium a) in the Introduction,

can be achieved through a hierarchy of scales: Λ′ ≫ Λ, µ1, µ2. In principle µ1 and µ2 could

be roughly ∼ Λ, because the U(1)LN symmetry is recovered when the scale Λ′ decouples,

no matter how large are the other scales. Indeed, integrating out the scale Λ′, the effective

theory at energies below Λ′ is:

LB ≃ LSM + iN̄ 6 ∂N + iN̄ ′/∂N ′ −
[
YN N̄ φ̃†ℓL +

1

2

(
Λ + µ2

1

Λ′µ
T
1

) (
N̄ ′N c + N̄N ′c)

+
1

2
µ2

1

Λ′µ
T
2 N̄N c +

1

2
µ1

1

Λ′µ
T
1 N̄ ′N ′c + h.c.

]
. (6.2)

This is nothing but a model of type A, with symmetry-breaking entries of the µ, µ′ type,

in eq. (5.1) suppressed by the large scale Λ′. The scale of lepton number violation can be

simply identified with ΛLN ∼ Λ′, which corresponds to the mass of the heavy Majorana

neutrinos, while the scale of lepton flavour violation would be ΛFL ∼ Λ. This pattern is

close to that of the extended models of ref. [4].

When the scale Λ is sufficiently above the electroweak scale, it can be integrated out,

resulting in the same d=5 and d=6 operators than in eq. (5.2), with µ given now by µ1
1
Λ′ µT

1 .

The effective theory at scales much lower than Λ is therefore:

LB ≃ LSM −
(

Y T
N

1

Λ
µ1

1

Λ′µ
T
1

1

ΛT
YN

)

αβ

(
ℓc
Lαφ̃∗

) (
φ̃†ℓLβ

)

+

(
Y †

N

1

Λ†
1

Λ
YN

)

αβ

ℓ̄L
α
φ̃i 6∂

(
φ̃†ℓβ

L

)
+ O

(
1

Λ′2 ,
1

Λ2Λ′

)
, (6.3)

to be compared with the typical structure of inverse seesaw models, eq. (5.2). The cd=6 ∝
cd=5 relation between the flavour structures of d=5 and d=6 operators discussed in section

4 holds (up to CP phases), provided we assume that the flavour symmetry group is

SU(3)ℓL
× SU(3)E × SU(n)N × O(n)N ′,N ′′ , (6.4)

and is only broken by the spurions YN ∼ (3̄, 1, n, 1) and Λ ∼ (1, 1, n, n), while both Λ′

and µ1 are invariant under O(n) rotations of the N ′′ and N ′ fields. In this situation,

µ2 ∼ (1, 1, n, n) ∼ Λ. Would Λ be instead proportional to the identity and YN the only

spurion, then the symmetry group would be

SU(3)ℓL
× SU(3)E × O(n)N,N ′,N ′′ , (6.5)

and µ2 would also be proportional to the identity.

Concerning the justification of the zeros in eq. (6.1), we note that the flavour symme-

tries just described are not enough to forbid, for example, a 33 entry in the case of eq. (6.4),

or 13 and 14 entries (proportional to YN ) in the case of eq. (6.5). However , it is easy to

justify a breaking of the U(1)LN symmetry only through the µ1 and µ2 terms, if we assume

that the symmetry has been spontaneously broken through the vev of a singlet scalar S

with lepton number LS = +1. The only possible renormalizable couplings of the scalar to

fermions would then be precisely those giving rise to the µ1 and µ2 terms, see eq. (A.10)
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in appendix A. As in the type A models with spontaneous symmetry breaking, questions

of naturalness may arise though, as we briefly discuss in that appendix.

As in the case of type A models, an alternative to break the global symmetry is to lift

the zeros in λN , that is the 13 or 14 entries in the neutrino matrix in eq. (6.1). A 13 entry

would reduce the model at low energies to that discussed in section 3. On the contrary, a

14 entry would be qualitatively different:

Mν =




0 YNv/
√

2 0 Y ′
Nv/

√
2

Y T
N v/

√
2 0 Λ 0

0 ΛT 0 0

Y ′T
N v/

√
2 0 0 Λ′


 , (6.6)

with Y ′
N and YN being distinct spurions, since the quantum numbers of Nα and N ′′

α are

different. The approximate U(1)LN symmetry is ensured in this case not by a suppressed

Y ′
N , but rather by a large hierarchy Λ′ ≫ Λ. The integration of the scale Λ′ and Λ in this

case gives now rise to the d=5 and d=6 operators with coefficient matrices given by:

cd=5
αβ ≡ ǫ

(
Y ′T

N

1

Λ′Y
′
N

)

αβ

, cd=6
αβ ≡

(
Y †

N

1

Λ†Λ
YN

)

αβ

+ O
(

1

Λ′

)
. (6.7)

Therefore, their flavour structures are completely unrelated and condition b) is not satisfied

for these models. Also, in contrast with type A models, the simplest case with n = 1 does

not lead here to a phenomenologically viable model since there is only one massive neutrino,

and at least n = 2 should have to be explored.

A possibility to enforce MFV in this case would be to have both Λ and Λ′ proportional

to the identity matrix, and YN ∝ Y ′
N . This might be justified assuming for instance the

flavour symmetry in eq. (6.5). This would not forbid however a 13 entry in eq. (6.6)

proportional to the YN spurion, and additional small parameters would thus be required

to ensure suppressed neutrino masses in this case. Note also that a spontaneously broken

symmetry pattern cannot generate any 14 entry in eq. (6.6) at the renormalizable level.

Finally, note that leptogenesis has been studied in some models of type B in ref. [21],

and in the “extended MFV” framework in ref. [22].

In summary, the models of type B are interesting in particular as ultraviolet comple-

tions of MFV neutrino mass models of type A. They involve two physical scales, associated

to the masses of extra heavy fermions -SM singlets or triplets- and in them the approximate

U(1)LN symmetry is recovered in the limit of large ΛLN, characteristic of some heavy fermion

mass, and not by introducing very small mass terms or couplings. Although physically more

appealing, the presence of two distinct mass scales is not stable under radiative corrections

(unless some couplings are small), which is nothing but the standard naturalness problem.

7 Conclusions

There are in the literature many minimal models which lead to predictions for the leptonic

cd=5 flavour structure, assuming that some of the entries of the Yukawa coupling matrices

and/or right-handed neutrino mass matrix vanish or are negligibly small [23]. However, as
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these models typically lead to very suppressed cd=6 coefficients, they are not experimentally

verifiable: in the seesaw model with three (two) right-handed neutrinos there is a nine(four)-

dimensional space of parameters which can lead to the same neutrino mass matrix. In order

to be established, a model must lead to measurable effects other than neutrino masses and

mixings. The working hypothesis is that neutrino masses are generated by some new

physics which decouples at low energies, leaving behind also a tower of d ≥ 6 effective

operators. Particularly interesting and predictive models of this kind are the MFV models

where not only the d = 6 couplings are large, but can be determined from the neutrino

mass matrix, up to an overall normalization scale.

We have explored various realizations of the MFV hypothesis in the lepton sector [4].

We have argued that it requires two a priori unrelated conditions. The first is the existence

of some approximate U(1)LN lepton number symmetry implying two distinct scales, ΛLN ≫
ΛFL: the first scale suppresses all operators violating lepton number, such as the d = 5

Weinberg’s operator, and the second one suppresses to a lesser extent flavour violating

but lepton number conserving processes, such as li → ljγ, mediated by d = 6 effective

operators. The second requirement is the existence of a relation between the flavoured

coefficients of the corresponding effective operators.

We did find explicit realizations of these hypotheses in the context of seesaw scenarios.

First, type II seesaw models (that is, scalar mediated) are of the type classified as minimal

in ref.[4], in which the coefficient cd=5 of Weinberg’s operator is the basic and only flavour

spurion in the model. The coefficients of the d = 6 effective operators are then quadratic

in this basic spurion. Second, we have considered seesaw models of type I -i.e. mediated

by singlet or triplet fermions- with an approximate U(1)LN symmetry [13]. Among them,

some of the so-called inverse seesaw models fall in the category of the extended models

defined in ref. [4], in which the d = 5 and d = 6 operators have identical flavour structure

in the absence of CP violation.

The most interesting result of this work is that we have identified the simplest model

(involving just two extra singlet or triplet fermions), which automatically satisfies the hy-

potheses of MFV. It is a seesaw model in which the assumption of an approximate lepton

number U(1)LN symmetry directly implies a relation between the flavour structures of the

d = 5 and the d = 6 effective couplings. The flavour violating rates induced by the latter

can be reconstructed - including CP phases - from the parameters in the light neutrino mass

matrix, up to a global normalization. The relation between the d = 5 and the d = 6 opera-

tor coefficients in this case differs in nature from those previously considered [4]. Moreover,

the light neutrino mass matrix involves in this model only one Majorana phase and can

be fully determined experimentally. We presented the phenomenological implications of

this simplest model in what respects the comparison of the li → ljγ branching ratios and

neutrinoless double beta decay. The model is a simple alternative for having sufficiently

small neutrino masses, with large and fully predictable flavour violating effects.

It remains to be seen whether it can be successful in explaining the origin of the

matter-antimatter asymmetry.
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S

Figure 6. Loop corrections to mass of the scalar S in type A models with spontaneously broken

lepton number.
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A Naturalness

We address here the question of naturalness and the stability of the scales present in the

models considered, which is an issue as they include at least one scale larger than the

electroweak one.

In models of type A as in eqs. (4.6) and (5.1), the quantum corrections induced on the

size of the electroweak scale by the presence of Λ of O(TeV ) are not significant, because

they have to be proportional to the small parameters ǫ or µ, µ′.

While the smallness of the ǫ entries in eq. (4.6) can be technically natural, as discussed

in section 4, a naturalness problem arises instead in the type A models in eq. (5.1), when the

zeros are justified as due to a conserved global lepton number, which is then spontaneously

broken, i.e. by the vev of a singlet scalar field S with interactions given in eq. (5.7). The

scalar potential V (S, φ),

V (S, φ) = λφ(φ†φ)2 + λS(S†S)2 + µ2
φφ†φ + µ2

SS†S + λ(φ†φ)(S†S) , (A.1)

leads to

< S >=

√
(λµ2

φ − 2λφµ2
S)

4λφλS − λ2
. (A.2)

This vev has to be small compared to Λ, as µ = g < S >, µ′ = g′ < S >, see eqs. (5.1)

and (5.7). The problem arises because, for instance, µS is destabilized at one-loop by
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contributions sensitive to high scales and only weighted by the couplings g, g′, λS or λ. As

an example, the contribution from the three diagrams in figure 6 are, respectively,

δµ2
S ∼ λ

(4π)2

[
Λ2

c − m2
φ ln

(
1 +

Λ2
c

m2
φ

)]
, (A.3)

δµ2
S ∼ 3λS

(4π)2

[
Λ2

c − m2
S ln

(
1 +

Λ2
c

m2
S

)]
, (A.4)

δµ2
S ∼ (g + g′)2

4(4π)2

[
Λ2

c + Λ2 ln

(
1 +

Λc

Λ

)]
, (A.5)

where Λc is a cutoff scale to be removed by renormalization, after which finite contributions

will still remain proportional to physical scales such as the Higgs mass mφ, the scalar mass

mS or the flavour scale Λ. A fine-tuning is thus necessary to preserve the desired hierarchy,

unless the dimensionless couplings g, g′, λS and λ turn out to be small.

Type B models involve at least two large scales, represented by Λ and Λ′, typically

with Λ′ ≫ Λ. The class of models in eq. (6.1) taken by themselves is free from naturalness

problems. To illustrate it, it suffices to take the simpler case µ1 = µ2 = Λ,

L = LSM + iN̄ /∂N + iN̄ ′/∂N ′ + iN̄ ′′/∂N ′′ −
[
YN N̄ φ̃†ℓL +

Λ′

2
N̄ ′′N

′′ c+

+
Λ

2

(
N̄N

′′ c +N̄ ′N c +N̄N
′′ c +N̄ ′′N c +N̄ ′′N

′′ c + N̄ ′′N
′ c

)
+ h.c.

]
, (A.6)

which becomes, in the basis of mass eigenstates denoted N1, N2, N3,

L = LSM + iN̄1/∂N1 + iN̄2/∂N2 + iN̄3/∂N3 −
[
YN (αN̄1 + βN̄2 + γN̄3)φ̃

†L+

+
Λ

2
(N̄1N

c
1 + ΛN̄2N

c
2) +

Λ′

2
N̄3N

c
3 + h.c.

]
, (A.7)

where (N1, N2, N3)
T = U (N, N ′, N ′′)T , U being unitary. α, β and γ are functions of Λ

and Λ′ which, up to order Λ
Λ′ , read

α =
i√
2

, β = − 1√
2

, γ =
Λ

Λ′ . (A.8)

In this basis, it is directly seen that the coupling of the Higgs to the heaviest field N3 is

suppressed by the factor Λ
Λ′ , a fact that could already be guessed from eq. (6.1). Also, for

instance, the amplitude of the loop diagram depicted in figure 7, can be written as

M(p)C
A = i

Y 4

2

Λ2

Λ′

∫
d4l d4k

(2π)8

lµkνσ
µ

AḂ
(σ̄ν)ḂC

l2k2[(l + k − p)2 − Λ′2](p − l)2(p − k)2
, (A.9)

where p is the incoming momentum and where we have neglected the mass of the Higgs and

the lepton running inside the loop. The integral in eq. (A.9) yields a logarithmic contribu-

tion of order one, hence the suppression factor γ2 = (Λ/Λ′)2 guarantees no higher order cor-

rection to mass of the N1. Furthermore, it is clear that this type of suppression always ap-

pears when the N3 field runs inside a loop, and no naturalness problem results in this model.
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N1

N1L N3

φ

N3 L

φ

Figure 7. Two loop correction to the N1 mass on type B model.

N N ′

S

N ′′ N ′′

Figure 8. Loop corrections to mass of N1 in type B models with spontaneously broken lepton

number.

The trouble is that the zeros in eq. (6.1) appear to be an ad hoc constraint. Again,

they can be justified if lepton number is a symmetry of the Lagrangian, spontaneously

broken by the vev of some scalar field(s), i.e. a singlet scalar S, to induce the entries µ1,

µ2 while the null entries remain protected by the symmetry. This solution rises questions

of naturalness, though, as quantum corrections may push the value of Λ towards that of

the higher scale Λ′. We will illustrate it in what follows.

Let us promote the Lagrangian corresponding to eq. (6.1) to the lepton number con-

serving one

L = LSM+iN̄ /∂N+iN̄ ′/∂N ′ + iN̄ ′′/∂N ′′ − V (S, φ) −
[
Λ

2
(N̄ ′N c + N̄N

′′ c +
Λ′

2
N̄ ′′N ′′c

+YN N̄ φ̃†L+
f1

2
S(N̄ ′N ′′c + N̄ ′′N ′c)+

f2

2
S†(N̄N ′′c + N̄ ′′N c) + h.c.

]
, (A.10)

where S is a new scalar field with charge −1 under lepton number symmetry. Note that the

symmetry is only violated after S acquires a vev, resulting in µ1, µ2 in eq. (6.1) given by

µ1 ≡ f1 〈S〉 and µ2 ≡ f2 〈S〉. Due to the couplings of the S field new quantum corrections

arise. The diagram in figure 8 induces a correction to the scale Λ given by

δΛ ∼ f1f2

(4π)2
Λ′. (A.11)

where logarithms of order one have been neglected. This correction could suffice to desta-

bilize the Λ scale. Note though that it does not need to be the case if the dimensionless

coupling f2, which does not enter in eq. (6.3), turns out to be sufficiently small.

In summary, naturalness issues arise in those models in which the justification of the

vanishing or smallness of some couplings calls for a spontaneous breaking of lepton number

symmetry. In the scenarios of this type analyzed, the problem can be evaded if certain

dimensionless new couplings take small values. If this is the case, although we have not
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identified a symmetry reason justifying such small values, the protection of the size of the

scales is technically natural.
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Erratum

Equations (4.19) and (4.27) should be corrected as mi → |mi| for i = 1, 2, 3. We note that

in our convention the neutrino masses mi are not all positive (although they can be made

positive by a shift of the Majorana phase).

The citation in the third paragraph of page 2, should include also the relevant refer-

ence [24].

Concerning the simple model described in section 4, we point out that the reconstruc-

tion of the d = 6 couplings from the d = 5 ones is only possible up to a discrete degeneracy

in the value of the Majorana phase, α, that cannot be determined from the measurement

of the neutrino masses and mixings alone. The origin of this degeneracy is the exchange

symmetry u ↔ v of the d = 5 operator.6 We refer to the replaced version in the archive

(arXiv:0906.1461 [hep-ph]), where a few sentences in section 4 and the conclusions have

been added to properly acknowledge this limitation of the predictivity of the model.

Added references

[24] S. Davidson and F. Palorini, Various definitions of minimal flavour violation for leptons,

Phys. Lett. B 642 (2006) 72 [hep-ph/0607329].

6We thank E. Fernández-Martinez and R. Alonso for pointing out this symmetry.
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